Feedback-Driven Structural Query Expansion for Ranked Retrieval of XML Data
نویسندگان
چکیده
Relevance Feedback is an important way to enhance retrieval quality by integrating relevance information provided by a user. In XML retrieval, feedback engines usually generate an expanded query from the content of elements marked as relevant or nonrelevant. This approach that is inspired by text-based IR completely ignores the semistructured nature of XML. This paper makes the important step from content-based to structural feedback. It presents an integrated solution for expanding keyword queries with new content, path, and document constraints. An extensible framework evaluates such query conditions with existing keyword-based XML search engines while allowing to easily integrate new dimensions of feedback. Extensive experiments with the established INEX benchmark show the feasibility of our approach.
منابع مشابه
Relevance Feedback in XML Retrieval
Highly heterogeneous XML data collections that do not have a global schema, as arising, for example, in federations of digital libraries or scientific data repositories, cannot be effectively queried with XQuery or XPath alone, but rather require a ranked retrieval approach. As known from ample work in the IR field, relevance feedback provided by the user that drives automatic query refinement ...
متن کاملQuery Refinement by Relevance Feedback in an XML Retrieval System
In recent years, ranked retrieval systems for heterogeneous XML data with both structural search conditions and keyword conditions have been developed for digital libraries, federations of scientific data repositories, and hopefully portions of the ultimate Web. These systems, such as XXL [2], are based on pre-defined similarity measures for atomic conditions (using index structures on contents...
متن کاملPseudo-Relevance Feedback Driven for XML Query Expansion
Pseudo-relevance feedback has been perceived as an effective solution for automatic query expansion. However, a recent study has shown that traditional pseudo-relevance feedback may bring into topic drift and hence be harmful to the retrieval performance. It is often crucial to identify those good feedback documents from which useful expansion terms can be added to the query. Compared with trad...
متن کاملQEA: A New Systematic and Comprehensive Classification of Query Expansion Approaches
A major problem in information retrieval is the difficulty to define the information needs of user and on the other hand, when user offers your query there is a vast amount of information to retrieval. Different methods , therefore, have been suggested for query expansion which concerned with reconfiguring of query by increasing efficiency and improving the criterion accuracy in the information...
متن کاملTopX: efficient and versatile top-k query processing for text, structured, and semistructured data
TopX is a top-k retrieval engine for text and XML data. Unlike Boolean engines, it stops query processing as soon as it can safely determine the k top-ranked result objects according to a monotonous score aggregation function with respect to a multidimensional query. The main contributions of the thesis unfold into four main points, confirmed by previous publications at international conference...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006